Icosian Reflections

…a tendency to systematize and a keen sense

that we live in a broken world.

IN  WHICH Ross Rheingans-Yoo—a sometime quantitative trader, economist, expat, EA, artist, educator, and game developer—writes on topics of int­erest.

A Meditation on π

note: This is not a volley in the \(\pi-\tau\) debate, of which Vi Hart is undisputed monarch -- and right, as well -- as far as I'm concerned.


(1)

A few number-theoretic \(\pi\) facts:

  • \(\pi\) is provably transcendental, thus also irrational.
  • \(\pi\) is suspected, but not known, to be normal, a generalization of transcendence.
  • \(\pi\), provably, has Liouville-Roth constant (or irrationality coefficient) no greater than \(7.6063\), and is suspected to have constant no greater than \(2.5\). (As a consequence of its irrationality, its L-R constant is \(\geq2\).)

Note, though, that each of these things is also true of literally 100% of numbers. And before you scoff at my use of the figurative 'literally', no no -- measure-theoretically, the non-(normal, transcendental, irrational, irrationality-coefficient-less-than-8) numbers make up exactly, mathematically 0% of the number line.

For the record: irrational algebraics like \(\sqrt2\) are also nonterminating and nonrepeating, and it's not clear what features of the stringwise-local decimal expansion (which seems to be the only thing \(\pi\) enthusiasts focus on, rather than the much-more-informative continued fraction representation...) distinguish transcendentals from irrational algebraics -- and yet \(\sqrt2\) seems to mystify no one, despite also plausibly encoding all possible variations of Hamlet, going on forever, holding all the universe's secrets, &c.

For more, the ever-wonderful Vi Hart:

Right so. Scott Aaronson has a recently-published essay titled "Why isn’t it more mysterious?", in response to the prompt "Q: Is there something mysterious about mathematics?":

Granted, not all mathematical mysteries have the character of "rigorously proving what common sense would predict." In 1978, John McKay noticed that the number 196,883 showed up in two completely

READ MORE
1 / 1